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Numerical Solution of Surface Waveguide Modes Using
Transverse Field Components

C. G. WILLIAMS anp G. K. CAMBRELL

Abstract—The computation of surface waveguide modes is fa-
cilitated by reducing the surface waveguide field problem to a
conventional eigenvalue problem that has no spurious solutions.
This is achieved by formulating the field problem in terms of trans-
verse field components and by using impedance boundary conditions
on an auxiliary boundary with a specified value of the exterior cutoff
wavenumber.

INTRODUCTION

In many field problems of practical interest, the region being con-
sidered is of infinite extent. A numerical method [17-[37] which
combines integral and differential equation approaches is found to be
effective in increasing computational efficiency and accuracy. A
further application of the method is described here, namely, the
computation of surface waveguide modes. When formulated in terms
of transverse field components, this is a two-dimensional exterior
eigenvalue problem.

SeLECTION OF FikLD COMPONENTS

A surface waveguide is essentially an inhomogeneous waveguide
without a closed boundary. The wave equation describing the
propagation in an inhomogeneous waveguide can be expressed in
terms of two field components, which are usually taken to be the
longitudinal components, E, and H.. (A field dependence of
exp [ j(wt — Bz) ] is assumed throughout.) However, as pointed out
by Gelder [4], this choice leads to a generalized eigenvalue problem
which, for a specified angular frequency w, is nonlinear in the eigen-
value g2 If the phase velocity /g is specified instead, a conventional
problem with eigenvalue ? is obtained, but the solutions include
spurious nonsurface modes. This is because the exterior field of a
surface mode decays exponentially corresponding to an imaginary
exterior cutoff wavenumber k4, that is, k4* = k? — 82 = o?ueo — B2
is negative for a surface mode, whereas the specification of w/8 is
msufficient to determine k42 On the other hand, for a specified value
of k42 use of the transverse components [4], E, and E,, or H, and H,,
leads to a conventional eigenvalue problem with eigenvalue «? which
has no spurious solutions.

ProsrLEM FoRMULATION

The cross section of a typical surface waveguide is shown in Fig. 1.
The rectangular dielectric rod (permittivity e) is enclosed within an
auxiliary boundary C which divides all space into an interior region B
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Fig. 1. Cross section of a rectangular dielectric rod surface waveguide.

and a homogeneous exterior region R,4. The transverse magnetic
field satisfies the differential equation [5]

Vt [']; Vt' (uH{)} i EVg X l:l (V: X H()i| = (ﬁg -— wgﬂéth. (1)
I €

Assuming uniform permeability ug, 1t Is convenient to rearrange (1)
into the following component form:
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which reduces to
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in the homogeneous exterior region 4. Although (1) is not self-
adjoint, it can be solved in R by such conventional techniques as the
method of moments [6]. For example, projecting both sides of (2)
and (3) onto the space spanned by a set of testing functions W, (z,y)

yields
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where n is the outward normal. In addition, the transverse field com-
ponents must also satisfy (4) in the homogeneous exterior region 4.
Hence the trial values of the transverse field H; and its outward
derivative dH,/on on the auxiliary boundary cannot be inde-
pendent. The compatibility condition which links them is found by
applyving Green’s theorem to (4) to yield the integral equation

1
Hy(r) = ;ﬁ{Htc(m) iKg(k |r—nl|)

i oH
—Kik|r—r])

< (ro)J» dsy (7)

where k = (—ks2)¥2, Kok |1 — 10|) 15 a modified Bessel function
[ Green’s function for (4)7, 8 is the exterior angle in radians between
the tangents on each side of the point 7 on C, and it is understood that
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the principal value of the integral is calculated. The integral equation
(7) is a boundary impedance constraint on the trial magnetic field
in (5) and (6) which precisely represents the effect of the exterior
free-space region R,4.

In order to proceed with the method of moments [ (5) and (6)],
it is necessary to express 0Ho/0n in (7) in terms of H,p. This can
be achieved by a separate application of the method of moments to
(7), which leads to the matrix relation

o= 2 A, ks (8)
7 (over )
where dH c/dn and H,c are represented by the parameters ¢, and ¢;,
respectively. The boundary terms in (5) and (6) can therefore be
approximated by the linear combinations

oH,
f wolegs = 2 B, ©
¢ an i (over ©)

H.
f w, 6« Yds = 2 Coilka®) s (10)
[¢f on 1 (over €)

Hence the application of the method of moments to (1) yields the
matrix eigenvalue problem

z Dy (ka?) s = o? 2

7 (over B and C) 7 (over R and C)

By (11)

in which the value of k42 is specified.

ExAMPLE

The method was applied to the rectangular dielectric rod shown in
Fig. 1. This simple example may be analyzed by placing the auxiliary
boundary directly on the dielectric—air interface. The approximate
field distributions and dispersion characteristics of the first few
surface modes were obtained by solving (11) for a range of values
of k4% A coarse square mesh system on a 6 point X 5 point grid was
used which resulted in matrices of order 60. Bilinear expansion func-
tions and testing functions were used for (5) and (6) whereas point
matching was used to reduce (7) to a matrix constraint. Fig. 2
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Dispersion characteristic of the dominant oEH;1 surface mode
of the dielectric rod (b/a = 1.25, ¢/e0 = 2.5).

Fig. 2.

shows the dispersion characteristic of the dominant JEH,; surface
mode for the case b/a = 1.25 and relative permittivity 2.5. Good
agreement is obtained with the results of Schlosser and Unger [7].

This method is currently being evaluated for obtaining dispersion
characteristics of optical fibers and open-boundary structures which
can support a quasi-TEM mode.
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Correction for Adapters in Microwave Measurements

A. UHLIR, JR., FELLOW, IEEE

Abstract—A measurement 6n a standard termination provides
sufficient information for making corrected measurements through
an adapter, if the dissipative loss of the adapter can be neglected.
This dpproximation often gives more consistent results than calibra-
tion techniqueé that require highly reflecting standards,

INnTRODUCTION

Since it is impractical to develop measurement equipment for
each of the transmission-line and connector types in common use,
measurements are often carried out through passive reciprocal
adapters (also ealled “transitions’ or ‘“transducers’’).

Adapters are designed to have low loss and low reflection. How-
ever, it is often necessary to apply computed corrections to achieve
the desired accuracy. This paper presents a simple method for
determining the corrections, based on the assumption that the
adapter has negligible dissipative loss. The ‘‘primary’’ connector on
the measuring apparatus will usually permit repeatable low-loss
connections. The ‘“‘secondary’’ connector type on the device under
test inay or may not permit consistent low-loss connections. If not,
the simple method will give more valid results than the technique
now commonly used with computer-controlled network analyzers.

Two examples will illustrate the intended applications of the
method. In each case, supposE that a computer-controlled network
analyzer system is available with 7-mm precision connectors: the
“primary’’ connector system.

The first example is the measurement of devices with SMA con-
nectors. Adapters from 7 mm to the “secondary” SMA connector,
constructed with reasonable care, will have good conducting surfaces
and negligible dielectric losses. It is probably more accurate to con-
sider such an adapter to be dissipationless than it is to assume that
low-loss connection of reference standards can be achieved con-
sistently and repeatedly without excessive stress on the SMA
connector. .

The second example is the measurement of waveguide compo-
nents with the 7-mm connector as a “primary’” connector. This
practice is simply an expedient to avoid setting up measurement
apparatus in each of the numerous waveguide bands. The proposed
method requires only a precision or sliding load as a reference stand-
ard in each waveguide type.

The discussion will consider a single frequency. It will be assumed
that the network analyzer is linear or that stored calibrations to
correct for nonlinearities have already been applied.

PrESENT CALIBRATION TECHNIQUE

The present method is based upon carrying out, at the secondary
connector, the same sort of calibration procedure as ordinarily
used at the primary connector to determine corrections for residuals
in the measurement system. For this purpose, reflection standards
are required in the secondary connector system. Ordinarily, the
standards used are a short circuit, a matched termination (which
may be a sliding load), and an open circuit or an offset short circuit.
A set of such standards is required for each connector type for
which measurements are required.

The reflection coefficient -is a bilinear function of the network
analyzer output, so the computer program is the same for making
corrected measurements at the secondary connector as at the pri-
mary connector.

When most of the measurements are to be made on highly reflect-
ing devices, it is preferable to use three highly reflecting standards
[1]. The calibration program must be modified in this case.

SimprIFIED METHOD

In the simplified method, the network analyzer is calibrated for
reflection measurements at its primary connector, by reference to
reflection standards for the primary connector. Then the adapter is
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