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Numerical Solution of Surface Waveguide Modes Using

Transverse Field Components

C. G. WILLIAMS AND G. K. CAMBRELL

Afrstracf-The computation of surface wavegnide modes is fa-

cilitated by reducing the surface waveguide field problem to a

conventional eigenvalue problem that has no spurious solutions.

This is achieved by formulating the field problem in terms of trans-

verse field components and by using impedance boundary conditions

on an auxiliary boundary with a specified value of the exterior cutoff

wavennmber.

INTRODUCTION

In many field problems of practical interest, the region being con-

sidered is of infinite extent. A numerical method [1 ]–[3 ] which
combines integral and differential equation approaches is found to be

effective in increasing computational efficiency and accuracy. A
further application of the method is described here, namely, the

computation of surface waveguide modes. When formulated in terms

of transverse field components, this is a two-dimensional exterior
eigenvalue problem.

SELECTION OF FIELD COMPONENTS

A surface waveguide is essentially an inhomogeneous waveguide

without a closed boundary. The wave equation describing the

propagation in an inhomogeneous waveguide can be expressed in

terms of two field components, which are usually taken to be the

longitudinal components, E, and H.. (A field dependence of

exp [ j (ad — L%) ] is assumed throughout. ) However, as pointed out
by Gelder [4], this choice leads to a generalized eigenvalue problem

which, for a specified angular frequency o, is nonlinear in the eigen-
value D2. If the phase velocity u/~ is specified instead, a conventional

problem with eigenvalue 02 is obtained, but the solutions include

spurious nonsurface modes. This is because the exterior field of a
surface mode decays exponentially corresponding to an imaginary

exterior cutoff wavenumber k.~, that is, k,l~ = k# — P2 = C02pW0— &
is negative for a surface mode, whereas the specification of co/b is
insufficient to determine k~z. On the other hand, for a specified value
of k.~z, use of the transverse components [4], E. and EY, or H. and HU,
leads to a conventional eigenvalue problem with eigenvalue d which
has no spurious solutions.

PROBLEM FORMULATION

The cross section of a typical surface waveguide is shown in Fig. 1.
The rectangular dielectric rod (permittivity c) is enclosed within an

auxiliary boundary C which divides all space into an interior region R
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Fig. 1. Cross section of a rectangular dielectric rod surface wavegnide.

and a homogeneous exterior region RA. The transverse magnetic

field satisfies the differential equation [5]

“[:V’”(PH’)l-’V’X[:(V’XH’)I=‘6’-@2p’)H’‘1’
Assuming uniform permeability M, it is convenient to rearrange (1)
into the following component form:

which reduces to

– (v,’ + k.,2)Ht = O (4)

in the homogeneous exterior region R~. Although (1) is not self..

adjoint, it can be solved in R by such conventional techniques as the
method of moments [6]. For example, projecting both sides of (2)
and (3) onto the space spanned by a set of testing functions W, (.z,v)

yields

R

= & JM (e – co) W,Hz dA

R

R

(5)

(6)

E

where n is the outward normal. In addition, the transverse field com-
ponents must also satisfy (4) in the homogeneous exterior region RA.

Hence the trial values of the transverse field H,o and its outward
derivative dHtc/rk on the auxiliary boundary cannot be inde-
pendent. The compatibility condition which links them is found by

applying Green’s theorem to (4) to yield the integral equation

where k = ( —k~z ) Ilz, & (k I r — r~ I) k a modified Bessel function
[Green’s function for (4) ], 0 is the exterior angle in radians between
the tangents on each side of the point r on C, and it is understood that
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‘t%e-principal value of the integral is calculated. The integral equation
(7) isaboundary impedance constratit onthetrial magnetic fie1d

in (5) and (6) which precisely represents the effect of the exterior
free-space region RA.

Inorder toproceed witkithe method of moments and (6)],
it is necessary to express aHtc/an in (7) in terms of H~c. This can

reachieved byaseparate application of the method of moments to

(7), which leads to the matrix relation

$%= 2 A,; (/cA’)l&
1 (over c)

(8)

where aH~c/tln and Hicarerepresented by the parameters $. and @i,
respectively. The boundary terms in (5) and (6) can therefore be

approximated by the linear combinations

~
w, $ds= 2 B,, (fcA’)@,

c i (over Cl

f
w,~ds= 2 ctj(kA’)$b,.

c J (over C)

(9)

(lo)

Hence the application of the method of momenteto (1) yields the

matrix eigenvalue problem

2 D,, (kA2)@j = U’ ~ Ei,c& (11)
f (.ver R and C) f (over R and C)

in which the value of kA2 is specified.

EXAMPLE

The method was applied to the rectangular dielectric rod shown in
Fig. l. Thissimple example may reanalyzed byplacing theauxifiary

boundary directly on the dielectric–air interface. The approximate
field distributions and dispersion characteristics of the first few

surface modes were obtained by solving (11) for a range of values

of k~z. A coarse square mesh system ona6point, X 5 point grid was

used which resulted in matrices of order 60. Bilinear expansion func-
tionsand testing functions were used for (5) and (6) whereas point
matching was used to reduce (7) to a matrix constraint. Fig. 2
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Fig. 2. Dispersion characteristic of the dominant oEH~l surface mode
of the dielectric rod (b/a = 1.25, e/60 = 2.5).

shows the dispersion characteristic of the dominant oEH1l surface
mode for the case b/a = 1.25 and relative permittivity 2.5. Good
agreement is obtaihed with the results of Schlosser and Unger [7].

This method is currently beihgevaluated for obtaining dispersion

characteristics of optical fibers and open-boundary structures which
can support a quasi-TEM mode.
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Correction for Adapters in Microwave Measurements

A. UHLIR, JR., FELLOW, IEEE

Absfract—A measurement on a standard termination provides

sufficient information fcir making corrected measurements through

an adapter, if the dissipative loss of the adapter can be neglected.

This approximation often gives more consistent results than calibra-

tion technique& that require highly reflecting standards.

INTRODUCTION

Since it is impractical to develop measurement equipment for
each of the transmiwion-line and connector types in common use,
measurements are often carried out through passive reciprocal
adapters (also called “transitions” or “transducers”).

Adapters are designed to have low loss and low reflection. How-
ever, it is often necessary to apply computed corrections to “achieve

the desired accuracy. This paper presents a simple method for
determining the corrections, based on the assumption that the

adapter has negligible dissipative loss. The “primary” connector on

the measuring apparatus will tisually permit repeatable. low-loss

connections. The “secondary” connector type on the device under

test may or may not permit consistent low-loss connections. If not,

the simple method will give more valid results than the technique
now commonly used with computer-controlled network analyzers.

Two examples will illustrate the intended applications of the
method. In each case, suppos~ that a computer-controlled network
analyzer system is available with 7-mm precision connectors: the
“primary” tonne ctor system.

The first example is the measurement of devices with SMA con-
nectors. Adapters from 7 mm to the “secondary” SMA connector,

constructed with reasonable care, will have good conducting surfaces
and negligible dielectric losses. It is probably more accurate to con-

sider such an adapter to be dissipationless than it is to assume that

low-loss connection of reference standards can be achieved con-

sistently and repeatedly without excessive stress on the SMA

connector.

The second example is t~e measurement of waveguide compo-
nents with the 7-mm connector as a “primary” connector. This

practice is simply an expedient to avoid setting up measurement

Apparatus in each of the nu,rnerous waveguide bands. The proposed
method requires only a precision or sliding load as a reference stand-
ard in each waveguide type.

The discussion will consider a single frequency. It will be assumed

that the network analyzer is linear or that stored calibrations to
correct for nonlinearltles have already been applied.

PRESENT CALIBRATION TECHNIQUE

The present method is based upon carrying out, at the secondary
connector, the same sort of calibration procedure as ordinarily

used at the primary connector to determine corrections for residuals
in the measurement system. For this purpose, reflection standards
are required in the secondary connector system. Ordinarily, the
standards used are a short circuit, a matched termination (which
may be a sliding load), and an open circuit or an offset short circuit.
A set of such standards is required for each connector type for

which measurements are required.
The reflection coefficient is a bilinear function of the network

analyzer output, so the computer program is the same for making
corrected measurements at the secondary connector as at the pri-
mary connector.

When most of the measurements are to be made on highly reflect-
ing devices, it is preferable to use three highly reflecting standards
[1]. The calibration program must be modified in this case.

SIMPLIFIED METHOD

In the simplified method, the network analyzer is calibrated for
reflection measurements at its primary connector, by reference to
reflection standards for the primary connector. Then the adapter is
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